


Fermi's Restless Universe

Dr. Julie McEnery
Project Scientist
NASA Goddard Space Flight Center

The Observatory 2008

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) 8 keV - 40 MeV

Fermi Mission Status

- We have recently concluded our first year of successful observations of the high-energy gamma-ray sky. Data are now public.
- Both the Large Area Telescope and the Gammaray Burst Monitor are working beautifully.
- We have discovered many new classes of gamma-ray emitting objects, some of which we will highlight in today's briefing

The Fermi Sky

- Wild variations on all timescales from less than seconds (e.g., gamma-ray bursts) to years (galaxies)
- More than 1000 sources discovered
 - Nearly half are identified
- New classes of objects detected
 - Pulsars seen only in gamma-rays
 - Gamma-ray emitting High-mass X-ray binaries
 - Radio and starburst galaxies

The Fermi Skymap

Movie: Fermi's mapping progress

Virgo region

All-sky image highlighting north polar region and

Movie of blazars at the north galactic pole

Highlights

- Fermi has discovered
 - More than 500 gamma-ray blazars the most prevalent source class by far.
 - 16 pulsars via gamma-rays and detected more than 30 others.
 - GeV gamma rays from two compact binary systems.
 - GeV emission from 12 GRBs; 250 seen with Fermi at low energy
- We're starting to see what we were missing!

New Results from Fermi's Large Area Telescope

Professor Peter Michelson
Principal Investigator
Stanford University

Overview

- Fermi's Large Area Telescope is a multinational and multi-agency collaboration
- In today's press conference, we will showcase
 - High-mass X-ray binaries (HMXBs)
 - Gamma-ray bursts

High Mass X-ray Binaries

- First detections of GeV intensity variations revealing orbital motion – a new class of highenergy emitters.
 - Identified mysterious EGRET sources:
 - LSI +61°303 26-day orbital period
 - LS 5039 3.9-day orbital period
- These sources also seen at TeV energies by ground-based telescopes

HMXB animation

Animation of a high-mass X-ray binary

Record-setting Fermi GRBs

- Fermi's Large Area Telescope (LAT) detected GeV gamma-rays from 12 bursts so far
- Three have set records:
 - Greatest total energies (~10⁵⁴ ergs, GRB 080916C)
 - Fastest motions (99.99995% of speed of light, GRB 090510)
 - Highest-energy photons (33.4 GeV, GRB 090902B)
- First observation of persistent GeV afterglows lasting from minutes to hours.

Setting limits on Quantum Gravity

- Central challenge for nearly a century has been to unify gravity with the other forces of nature:
 - Requires a quantum theory of gravity
 - On general grounds, expect quantum gravity effects to be large on scale of the Planck length defined by three fundamental constants of nature (c, h and G):

$$l_{\text{Planck}} = 1.6 \times 10^{-35} \text{ meters}$$

 Quantum theory of light tells us the energy of a photon increases as its wavelength decreases:

if photon wavelength equals Planck length then

$$E_{\text{photon}} = E_{\text{Planck}} = 1.2 \text{ x } 10^{19} \text{ GeV}$$

Setting limits on Quantum Gravity

- Some QG theories predict that higher-energy photons are more affected by the quantum nature of space-time and will travel more slowly than lower-energy photons.
 - Violates Einstein's Special Theory of Relativity
 - Can be tested using GRBs, with shorter bursts providing the best limits
- GRB090510 has limited this effect to 0.9 second over a baseline of 7 billion light-years
 - → Limits the scale of QG effects to be larger than Planck energy. Einstein's relativity wins again!

Visualizing Quantum Gravitational Effects

Movie: Gamma-ray burst photon delay as expected by quantum gravity

Conclusions

- Fermi has had a great first year!
- Fermi has found more than 5 times as many high-energy sources as were previously known
 - including several new kinds of high-energy sources never seen before.
- Fermi is transforming our knowledge of the highenergy Universe from a handful of known sources to complete classes of objects.
- Fermi is probing physics on interesting scales with gamma-ray bursts
- There is much more to come!